Build an open source AI assistant with Streamlit, Microsoft Phi-3 & Ollama

Build an open source AI assistant with Streamlit, Microsoft Phi-3 & Ollama

Β·

3 min read

Let's build a chatbot with just Python using the Streamlit library, Ollama, and Microsoft Phi-3.

Streamlit

Streamlit turns data scripts into shareable web apps in minutes. All in pure Python. No front‑end experience required.

You can find more info in the official Streamlit docs.

Ollama

Ollama allows you to run open-source large language models, locally

You can find more info in the official Ollama docs

Phi-3 Mini

Phi-3 Mini is a 3.8B parameters, lightweight, state-of-the-art open model by Microsoft.

You can find more info in the official Phi-3 Mini docs.

Steps

Create a new conda environment

conda create --name envStreamPhi

Activate the environment

conda activate envStreamPhi

Install ollama

Download Ollama from https://ollama.com/download

pull the phi-3 model

the model we will be using is located here:

ollama pull phi3

Pull the Embeddings model:

ollama pull nomic-embed-text

Test installation

streamlit hello

Build the AI assistant

In order to build the AI assistant, you have 2 choices : clone the repo and get all the code from the get-go or coding along with me.

I - First option : Clone the project from my Github

git clone https://github.com/JalelTounsi/oLLaMaStreamPhi.git

run the application

streamlit run app.py

II - Second option: code along

Create your app.py file

Add imports

import streamlit as st
import ollama

Add the defacto message

if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "assistant", "content": "Hello tehre, how can I help you, today?"}]

Add the message history

for msg in st.session_state.messages:
    if msg["role"] == "user":
        st.chat_message(msg["role"], avatar="πŸ§‘β€πŸ’»").write(msg["content"])
    else:
        st.chat_message(msg["role"], avatar="πŸ€–").write(msg["content"])

Configure model

def generate_response():
    response = ollama.chat(model='phi3', stream=True, messages=st.session_state.messages)
    for partial_resp in response:
        token = partial_resp["message"]["content"]
        st.session_state["full_message"] += token
        yield token

Configure the prompt

if prompt := st.chat_input():
    st.session_state.messages.append({"role": "user", "content": prompt})
    st.chat_message("user", avatar="πŸ§‘β€πŸ’»").write(prompt)
    st.session_state["full_message"] = ""
    st.chat_message("assistant", avatar="πŸ€–").write_stream(generate_response)
    st.session_state.messages.append({"role": "assistant", "content": st.session_state["full_message"]})

all the codebase of app.py

import streamlit as st
import ollama

st.title("πŸ’¬ Phi3 Chatbot")

if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "assistant", "content": "Hello tehre, how can I help you, today?"}]

### Write Message History
for msg in st.session_state.messages:
    if msg["role"] == "user":
        st.chat_message(msg["role"], avatar="πŸ§‘β€πŸ’»").write(msg["content"])
    else:
        st.chat_message(msg["role"], avatar="πŸ€–").write(msg["content"])

## Configure the model
def generate_response():
    response = ollama.chat(model='phi3', stream=True, messages=st.session_state.messages)
    for partial_resp in response:
        token = partial_resp["message"]["content"]
        st.session_state["full_message"] += token
        yield token

if prompt := st.chat_input():
    st.session_state.messages.append({"role": "user", "content": prompt})
    st.chat_message("user", avatar="πŸ§‘β€πŸ’»").write(prompt)
    st.session_state["full_message"] = ""
    st.chat_message("assistant", avatar="πŸ€–").write_stream(generate_response)
    st.session_state.messages.append({"role": "assistant", "content": st.session_state["full_message"]})

Run the Streamlit app

streamlit run app.py

Bonus point

Feel free to check this video to understand the code, follow along and run the AI assistant locally on your computer: AI assistant using Streamlit, Phi3 and Ollama

Did you find this article valuable?

Support Second Brain by becoming a sponsor. Any amount is appreciated!

Β